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1. Space-time mesh adaptation for solute 

transport in randomly heterogeneous porous 

media 
 

1.1 Introduction 

A critical challenge to the characterization of solute transport in heterogeneous porous 

materials is the development of numerical methodologies rendering suitable approximations of 

the space-time dynamics of concentration fields in the presence of marked spatial contrasts of 

the medium hydraulic parameters, such as conductivity. 

This study is focused on transport of non-reactive chemicals in heterogeneous porous 

media at the continuum scale, as described through the classical Advection Dispersion 

Equation (ADE). Effective dispersion coefficients appearing in the ADE accounts (in principle) 

for the enhancement of solute dispersion due to the unresolved velocity variability at scales 

which are not explicitly included in the model (see, e.g., Bijeljic and Blunt, 2006; Dentz and 

de Barros, 2015; de Barros and Dentz, 2016). This picture is consistent with the dispersion 

setting in capillary tubes (Taylor, 1953; Salles et al., 1993) where hydrodynamic dispersion 

arises from enhanced diffusion due to the presence of a spatial velocity distribution. The 

advection term appearing in the ADE accommodates the resolved details of the velocity field 

emerging from the solution of the flow problem. In the past two decades a considerable amount 

of literature focuses on the analysis of transport features which are not consistent with the ADE 

formulation (most notably, e.g., long tails of solute breakthrough curves, corresponding to long 

residence times of solute mass within the domain). These observations has substantiated the 

development of models which can capture non-Fickian (or so-called anomalous) transport 

features. These are based on approaches which include space-time non local theories (e.g., 

Cushman and Ginn, 1993; Guadagnini and Neuman, 2001; Morales-Casique et al., 2006a, b), 

continuous time random walk (CTRW, Berkowitz et al., 2006), fractional derivatives (Zhang 

et al., 2007) and multi-rate mass transfer concepts (Haggerty et al., 2004). All of these effective 

formulations include nonlocal transport terms, a framework relating all of them being presented 

by Neuman and Tartakovsky (2009).  

According to a number of recent studies, the ability of the ADE-based mathematical 

formulation to interpret solute transport processes in randomly heterogeneous media is largely 

tied to the level of descriptive detail associated with the characterization of the system 

properties. For example, results of Riva et al. (2008, 2010) suggest that apparent non-Fickian 

features observed in field-scale data are captured by the use of an ADE through an appropriate 

description of the (random) three-dimensional heterogeneity of the aquifer, and hence of the 

velocity field. In this context, the space-time resolution selected to approximate the ADE can 

have a considerable impact on the ability of the model to interpret observed results (e.g., 

Lawrence and Rubin, 2007). It is then relevant to be able to approximate the ADE with a 

sufficiently refined space-time resolution to retain the relevant details of the input 

heterogeneous conductivity (or trasmissivity) field, as the spatial organization of preferential 
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pathways can imprint important transport features of transport (Edery et al., 2014). An a priori 

selection of the most suitable space and time discretization becomes then a challenging task. 

This aspect is exacerbated in highly heterogeneous media where solutes can typically travel 

relatively fast along preferential pathways and reside for long times in low-velocity regions. 

A convenient way to design a mesh according to which the space-time domain is 

discretized is to rely on a setting characterized by a uniform numerical grid in space and a fixed 

time step across the simulation window. In this context, an appropriate discretization grid can 

be identified through a typical grid convergence analysis. The latter is based upon the solution 

of the numerical problem through diverse space / time discretization levels, obtained through 

a sequential uniform refinement of the spatial mesh and of the time step. This type of approach 

can lead to unaffordable computational costs as the domain size increases and/or a detailed 

description of the tracer plume is needed. Adaptive discretization techniques provide a valuable 

alternative. The basic idea of adaptive discretization is to exploit the features of the solution to 

increase or decrease automatically the space and time resolution associated with the numerical 

approximation. As a consequence, the element and time step size (and eventually the element 

shape) is not chosen a priori, but dynamically adjusted. This is typically obtained upon relying 

on a specific error indicator. A series of previous works provides examples of implementation 

of adaptive grids in the context of numerical modeling of flow (Knupp, 1996; Cao and 

Kitanidis, 1999; Cirpka et al., 1999; Mehl and Hill, 2002; Bresciani et al., 2012; Jayasinghe, 

2015) and solute transport scenarios in homogenous (see, e.g., Pepper and Stephenson,1995; 

Kavetski et al., 2002; Saaltink et al., 2004; Younes and Ackerer, 2010) and heterogeneous (see, 

e.g., Huang and Zhan, 2005; Klieber and Rivière, 2006; Chueh et al., 2010; Gedeon and 

Mallants, 2012; Amaziane et al., 2014; Mansell et al., 2002 and references therein) porous 

media. Amaziane et al. (2014) employ both space and time adaptive technique for simulating 

radionuclide transport in block-wise heterogeneous media. In their approach, these authors did 

not incorporate the anisotropic features of the solution to guide the spatial adaptation of the 

grid. Jayasinghe (2015) implement an anisotropic spatial and temporal step refinement for 

single- and two- phase flow taking place in a homogenous field scale scenario. An advantage 

of anisotropic mesh adaptivity is that the size, orientation and shape of the elements are 

optimized to match the directional features of the problem considered. 

Our study is viewed in this context. A distinctive original aspect of our work is that we 

combine anisotropic mesh and time step adaptation to simulate solute transport within 

randomly heterogeneous media. We characterize heterogeneity of the considered porous 

systems in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, 

Y, is treated as a second-order stationary random process This conceptualization of the medium 

is at the basis of a large body of works in the field of stochastic groundwater hydrology (see, 

e.g., Dagan, 1989 amongst others). By performing a detailed study on single realizations of the 

conductivity field, our work provides an assessment of the reliability of adaptive grid 

techniques to be employed within uncertainty quantification and model calibration procedures.  

Our works starts from the anisotropic mesh and time step adaptive discretization 

technique recently proposed by Esfandiar et al. (2014, 2015). The latter relies on the a 

posteriori recovery-based error estimators for space and time discretization errors presented by 

Micheletti and Perotto (2010) and Porta et al. (2012a,b). Esfandiar et al. (2015) assess the 

impact of employing a space and time adaptation procedure in the context of parameter 

estimation. They do so upon comparing parameter estimates obtained through inverse 
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modeling of solute transport within a laboratory-scale block-wise heterogeneous flow cell. 

Their results show that implementation of the space-time adaptive methodology yields 

improved quality of parameter estimates as compared against those obtained using fixed 

uniform discretization characterized by a seemingly sufficient resolution. 

Here, we extend the adaptive discretization technique of Esfandiar et al. (2015) and apply 

it to modeling solute transport in single realizations of randomly heterogeneous porous media. 

We follow the typical procedure of solving the flow problem on a fixed numerical grid. The 

latter is designed to honor the spatial structure of the random conductivity field. The resulting 

velocity field may exhibit a complex spatial arrangement, including the occurrence of high 

velocity regions where flow is channeled and large stagnant zones that may originate non-

Fickian solute transport features displayed by spatially averaged solute breakthrough curves 

(Edery et al., 2014). Spatial dynamic adaptation entails performing coarsening and refinement 

of the computational mesh/grid at each time step. In this context, a critical challenge to an 

effective implementation of dynamically adaptive spatial meshes is the requirement of 

projecting the velocity field onto the adapted mesh. The latter could be characterized by local 

element sizes which may be unrelated to the original mesh employed to characterize flow 

across the hydraulic conductivity field.  

Here, we investigate two diverse strategies guiding the anisotropic meshes adaptation. 

The error estimator associated with each of these strategies is assessed on the basis of spatial 

gradients of (i) solute concentration only, or (ii ) both concentration and fluid velocity 

components. With reference to the latter implementation, we follow the procedure proposed by 

Porta et al. (2012a) to combine diverse error indicators to drive mesh adaptation. Embedding 

the velocity components in the error estimator is an original feature of our study and is 

consistent with the feedback between the spatial derivatives of the components of the velocity 

vector and the observed folding, stretching, mixing and spreading of the evolving concentration 

plume. The latter have emerged as remarkable features, which are particularly evident in highly 

heterogeneous media (see, e.g., Le Borgne et al., 2015). 

To assess the quality of the adaptive methodologies implemented, we focus on the 

temporal evolution of both local and spatially integrated concentrations as well as global 

spreading and mixing indicators. These include the second centered spatial moment of 

concentration and the scalar dissipation rate. 

1.2 Problem Setting  

1.2.1 Mathematical and numerical model  

 We consider a two-dimensional rectangular domain, W, of height H = 0.14 m and width 

L = 0.04 m. We denote the horizontal and the vertical direction with y, z, respectively (see 

Figure 1.1). The Advection Dispersion Equation (ADE) reads 

( ) 0
C

C C
t

µ
+ ÖÐ -ÐÖ =

µ
v D ,  (1.1) 

where ( , )C C t= x  [-] is solute concentration at location x and time t, v [LT -1] is the velocity 

vector (vy and vz respectively denote horizontal and vertical velocity components), and D [L2T-

1] is the local dispersion tensor given by 
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( ) ( ) with , = ,
i j

T m ij L T

v v
D i j y za d a a= + + -D

v
. (1.2) 

Here, Ta  [L] and La  [L] respectively are transverse and longitudinal dispersivity; 
mD [L2T-1] 

is molecular diffusion; 
ijd is the Kroneckerô delta; and v  is the velocity modulus. We set 

310T L ma a a -= = =  and 9 210 /mD m s-=  in our showcase examples. The imposed boundary 

conditions for Eq.s (1.1)-(1.2) are (see also Figure 1.1c) as follows: a time-varying 

concentration 
BCC  is set along the bottom edge of the domain, according to 3 t

BCC e-= ; 

impermeable boundary conditions are prescribed along the vertical edges; and a free boundary 

condition is imposed at the top of the domain, i.e., 0CÐ Ö =n , n being the normal unit vector 

to the boundary (see also Figure 1a). Solute concentration is zero everywhere in the domain at 

the initial simulation time. 

We consider a steady-state advective velocity field, v, whose spatial structure is driven by the 

typical formulations 

0ÐÖ =v , 
K

h
f

=- Ðv ,   (1.3) 

where h [L] is hydraulic head, and f [-] is porosity, which we take as uniform and set as f = 

0.35. The imposed boundary conditions for Eq. (1.3) are (see also Figure 1.1b): fixed head 

along the bottom edge, BCh ; no-flow along the vertical edges; and imposed constant vertical 

velocity, 
,z BCv =

37.0 10 /m s-³ , at the top boundary. The hydraulic conductivity of the porous 

medium is modeled as an isotropic random field ( , )Y y z

GK K e=  [LT -1], 910 /GK m s-=  being 

the geometric mean of K and Y a zero-mean second-order stationary random process 

characterized by the isotropic exponential covariance function 

| |

2 l
Y YC es

-

=

r

.  (1.4) 

Here, r, 2
Ys , l respectively are the separation vector (or lag) between two points in space, 

variance and correlation length of Y. In our examples, we set l = 0.02 m, corresponding to H/l 

= 7 and L/l = 2. We consider a mildly (2
Ys  = 1) and a strongly (2

Ys  = 5) heterogeneous Y field, 

to explore the effects of increasing level of complexity of the velocity and concentration 

distributions on the grid adaptation strategy. The heterogeneous conductivity fields are 

synthetically generated by the widely used and tested code SGSIM (Deutsch and Journel, 1998) 

on a uniform grid with 50yn =  and 175zn =  elements, respectively along the y and z directions. 

Note that this corresponds to characterize the conductivity field through 25 generation points 

per correlation length, which ensures attaining a high level of descriptive detail of the 

heterogeneity in K. Hereinafter we label as KD  the size of the square element of the uniform 

mesh employed for generating K. Figure 1.1a depicts the realization of Y employed for the test 

case with 2
Ys  = 5.  

Transport simulations are performed across a time window of length 4 PVT t=  and 2 PVT t= , 

respectively for 2 5Ys =  and 2 1Ys = , PVt  = 
,/ z BCH v  = 200 s corresponding to a pore volume. 
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A global Péclet number ( ), ,/z BC m z BCPe lv D v a= +  can be defined as the ratio between average 

diffusion-dispersion and advective time scales. In our numerical test cases 20.0Pe= . 

Following Esfandiar et al. (2014, 2015), we discretize Eq.s (1.1)-(1.2) by means of a stabilized 

finite element method, which is based on a streamline diffusion technique (Brooks and Hughes, 

1991). Spatial discretization is performed upon relying on a spatial mesh {}h E=T , which 

results in a conformal discretization of W into triangular elements E. Discretization of the time 

window [0, T] is performed upon introducing the time levels { }0 0,.., nt t T= = , which define 

the set {}kI  of the time intervals kI  of amplitude 
1k k kt t t+D = -. Time discretization is 

performed through the standard ɗ-method (Quarteroni et al., 2007). We resort to an implicit 

scheme and set ɗ= 2/3 to guarantee the unconditionally absolute stability of the ɗ -method. The 

numerical solution of the flow problem in Eq. (1.3) relies on a standard finite element of degree 

two for the pressure. As such, velocity components are obtained as piecewise linear functions 

through Eq. (1.3). 

Figure 1.1b depicts the resulting spatial distribution of the natural logarithm of the modulus of 

v , ()log v , for 2 5Ys = . Note the complexity of the structure of the velocity field, as evidenced 

by the presence of a clearly defined low-velocity region and two preferential pathways 

characterized by large velocities (identified by black dashed curves in Figure 1.1b). Figure 1.1c 

depicts the concentration field at t = 0.5 tPV calculated on the same uniform mesh for 2 5Ys =  

(see details in Section 1.2.3). 

 

 

Figure 1.1. Test case with 
2 5Ys = : (a) Spatial distribution of the log-conductivity field Y, (b) spatial distribution 

of the (natural) logarithm of the velocity modulus, (c) solute concentration field at t = 0.5 tPV. High-velocity 

channels (dashed lines) and the low velocity region (dash-dotted line) are highlighted in (b). Locations associated 

with section averaged concentrations 
1C , 

2C , 
3C  and local concentrations FC , SC  are identified in (c) (see 

text for definitions). Imposed boundary conditions for the flow and transport problems are respectively included 

in panels (b) and (c). 
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1.2.2 Observables  

We introduce here the quantities which constitute the key target outputs for the purpose 

of our analyses. We consider the temporal variation of solute concentration at given locations 

within the computational domain, i.e., 

() ( , , )F F FC t C y z t=  () ( , , )S S SC t C y z t=  (1.5) 

where FP  = ( Fy , Fz ) and SP  = ( Sy , Sz ) indicate the locations in the domain where v  is 

largest and lowest, respectively (i.e., subscripts F and S respectively correspond to fast and 

slow regions). We find ( 23.8 10 ;Fy m-= ³  23.8 10Fz m-= ³ ) and ( 21.5 10 ;Sy m-= ³  

23.6 10Sz m-= ³ ) for the highly heterogeneous test case (2 5Ys = ), as depicted in Figure 1.1c. 

Otherwise, we obtain ( 34 10Fy m-= ³ ; 26.9 10Fz m-= ³ ) and ( 21.8 10 ;Sy m-= ³  

23.3 10Sz m-= ³ ) for the field with 2 1Ys = . 

We also consider section-averaged concentrations, mimicking typically observed 

breakthrough curves, i.e., 

1
( , , )i i

L

C C y z t dy
L
= ñ  with { }1,2,3iÍ ,  (1.6) 

where 1C  is evaluated at z1 = H/4, 2C  at z2 = H/2, and 3C  at z3 = H (see Figure 1.1c). 

We then focus on globally integrated quantities, which can quantify spreading and mixing of 

the plume within the domain. To this end, we consider the second centred spatial moment of 

the concentration plume along the z-direction, which has a relevant role for the characterization 

of solute plume spreading and is defined as 

()
()

()
21

( , )zz AVS t z z t C t d
M t

W

= - Wè øê úWñ
x  with () ( , )M t C t d

W

= Wñ x ,  (1.7) 

where AVz  is the center of mass of the plume at time t, i.e., 

()
()
1

( , )AVz t z C t d
M t

W

= W
Wñ

x . (1.8) 

We finally consider the scalar dissipation rate 

() Tt C Cdc
W

= Ð Ð Wñ D  (1.9) 

which quantifies the rate of mixing of the plume and is markedly important for the study of 

mixing-driven reactive transport (see, e.g., De Simoni et al., 2005, and references therein). 

1.2.3 Fixed Uniform Discretization  

We solve flow (Eq. (1.3)) and transport (Eq. (1.1)) in the set-up described in Section 1.2.1 

for a series of fixed uniform triangular meshes, each associated with an increased level of 

spatial discretization and decreased width of the time step. Increasing levels of space-time 

refinement are analyzed until convergence of the numerical results is attained. As a 

convergence criterion, we impose that all of the integrated quantities of interest (Eq.s (1.6)-

(1.9)) do not exhibit a relative absolute error larger than 1% and that the pointwise breakthrough 

curves (see Eq. (1.5)) do not exhibit a relative absolute error larger than 5% between two 

consecutive levels of refinement. As a starting grid, corresponding to a first level of 

discretization, we select a structured Cartesian grid where the distances yD  and zD  between 

two nodes along the y and z axes coincide with KD . The resulting mesh, here termed G1, is 
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formed by 1 17'500Gn =  triangles. As a second level of discretization (corresponding to mesh 

G2), we subdivide each conductivity element into four sub-elements, each of which is 

composed of two triangles. In this configuration, the length of the edges of the triangles are 

/ 2y z KD =D =D and G2 comprises 2 70'000Gn =  elements. We proceed according to this 

strategy until we reach a level of refinement corresponding to / 6y z KD =D =D for mesh G6. 

The latter is then composed of 6 630,000Gn =  triangles. With reference to the time step, we 

analyze three different values, i.e., 
1

1 10t s-D = , 
2

2 5 10t s-D = ³  and 
2

3 2.5 10t s-D = ³ . Our 

results indicate that the quantities of interest introduced in Section 2.2 attain convergence at 

G5 (formed by 5 43'7500Gn =  triangles) and for 
2

2 5 10t s-D = ³ . In the following, the results 

associated with G6 and 
2

2 5 10t s-D = ³  represent our reference solution for the fixed time-space 

discretization and results for the adaptive procedure will be compared against these. 

1.3 Adaptive Discretization Technique  

We briefly recall here the main features of the adaptive discretization methodology. 

The latter has been previously applied to shallow water modeling (Porta et al., 2012b) and 

computational fluid dynamics (Micheletti et al., 2010) settings. Esfandiar et al. (2015) applied 

this procedure to analyze solute transport within homogeneous and block-wise heterogeneous 

porous media. 

The adaptive technique is grounded on the definition of an a posteriori error estimator for the 

global (space-time) discretization error 
A A

ht h th h h= + ,    (1.10) 

where 
A

hh  is an anisotropic spatial error estimator that enables us to optimize the size, shape, 

orientation of the mesh elements and th  is an error estimator for the time discretization. We 

compute the two terms in Eq. (1.10) by relying on recovery-based error estimators 

(Zienkiewicz and Zhu, 1987), in the form introduced by Micheletti and Perotto (2010) and 

Porta et al. (2012b). 

1.3.1 Anisotropic Mesh Adaptation  

Let Ch be the piece-wise linear finite element approximation of concentration in the 

solution of Eq. (1.1), which is defined on mesh hT . We follow Porta et al. (2012a) and 

Micheletti and Perotto (2010) and introduce the local anisotropic estimator 

() ()( ) ()( ){

()( ) ()( )}

22
2

, 1, 1,

1, 2,

2
2

2, 2,

1

, 0

A

E C E E R h h

E E E

E E R hh h

t P C t C t

P C t C t d E tE

h l
l l

l

D

è øè ø= Ö -Ðê ú ê ú

è ø+ Ö -Ð D Í
ê ú

>

ñ r

r T

. (1.11) 

Here, ,i El  and ,i Er  (i = 1, 2) respectively identify the eigenvalues and the eigenvectors of the 

tensor ME, defining the mapping between a reference triangle ĔE  and the generic element E of 

hT  (see Figure 1.2a). Note that ,i El  are measures of the length of the semi-axes of the ellipse 

circumscribing E, while ,i Er  identify the directions of these semi-axes (Formaggia and Perotto, 

2001, 2003). The quantity ()( )R hP C t  represents the recovered spatial gradient of Ch at time t. 
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As depicted in Figure 1.2b, ( )R hP C  is computed as the area-weighted average of the discrete 

gradient ()hC tÐ  within the patch ED  of triangles sharing at least one vertex with E. The a 

posteriori estimator of the global error associated with the finite element spatial discretization 

of the concentration field is computed as 

() ()
2 2

, 0
h

A A

C E C

E

t t th h
Í

è ø è ø= >ê ú ê úä
T

. (1.12) 

Eq. (1.12) represents an anisotropic error estimate, because it directly involves the anisotropic 

quantities ,i El  and ,i Er  identifying the size, shape, and orientation of element E. We refer to 

Porta et al. (2012a, b) and Micheletti and Perotto (2010) for a rigorous illustration of the error 

estimator in Eq.s (1.11)-(1.12) and its application. This adaptation strategy and the associated 

results will be referred to as CGÐ  in the following. 

 

 

Figure 1.2. Spatial error estimator (),

A

E C th  in (1.11): definition sketch of (a) the anisotropic setting, and (b) the 

recovered gradient ( )R hP C . 

 

Together with Eq. (1.12), we consider in this work an additional version of the error 

estimator. The latter is constructed with the aim of embedding the spatial variability of the 

velocity components. Let us then assume that the field ( , )hh hu v=$ $ $v  represents the piece-wise 

linear interpolation of the velocity field on the adapted mesh hT . We introduce the 

dimensionless components 

min( )

max( ) min( )

h h

h
h h

u u
U

u u

-
=

-

$ $

$ $
, 

min( )

max( ) min( )

h h

h
h h

v v
V

v v

-
=

-

$ $

$ $
, (1.13) 

which we embed in the following definition for the error estimator 

()

()

( )( ){

( )( )} ()

7

,

22
2

, 1, 1,

1, 2,

2
2 7

2, 2, ,

0, 10

1

, 10

h E

A

E U E E R h h

E E E

E E R h h h E

if C t

t P U U

P U U d E if C t

h l
l l

l

-

D

-

ë
î   <
î
î

è øè ø= Ö -Ðìê ú ê ú
î
î

è ø+ Ö -Ð D   ²î ê úí

ñ r

r

  (1.14) 

Here, (),h EC t  represents the average concentration in the mesh triangle E at time t. We can 

also define an error estimator (),

A

E V th  upon replacing Uh with Vh in Eq. (1.14). It is then 

possible to use Eq. (1.14) to obtain global error estimates 
A

Uh  and 
A

Vh  in the form of Eq. (1.12). 



12  

 

Note that the error estimator in Eq. (1.14) is defined as a measure of the variability of the 

dimensionless velocity component Uh, and is also conditional to the value of local 

concentration (),h EC t . This choice is consistent with our aim, which is directed towards 

targeting grid refinement across portions of the domain where solute mass is present, i.e., where 

transport phenomena are active at a given time.  

We aim here at embedding in a unique error indicator the information on the spatial 

distribution of concentration and on the velocity components. Following Porta et al. (2012b), 

we then define a global error estimator 

() () () ()( )
2 2 2 21

3

A A A A

CUV C U Vt t t th h h hè ø è ø è ø è ø= + +ê ú ê ú ê ú ê ú (1.15) 

where the concentration field and the velocity components are jointly employed to guide the 

grid adaptive procedure. This adaptation strategy and the associated results will be referred to 

as CUVGÐ  in the following. Note that an error estimator in which different quantities are 

combined has been previously employed  in Porta et al. (2012a) in the context of  shallow water 

equations.  

Here, we apply the same concept to the numerical solution of Eq. (1.1), where the 

velocity components are parameters (and not unknowns) of the problem. We do so on the basis 

of the observation that the solution of Eq. (1.1) requires projecting the velocity components 

onto the grid employed to compute concentration. We use a linear interpolation of the velocity 

field between the mesh employed to solve Eq. (1.3) and the mesh where Ch is computed. The 

indicator in Eq. (1.15) is designed to control the error associated with the solution of Ch as well 

as the one related to the interpolation of Uh, Vh. 

The final goal of our procedure is to construct an anisotropic spatial mesh driven by the 

estimator in Eq. (1.12) or Eq. (1.15). Let us assume here that Ch, Uh, Vh are known piece-wise 

linear functions on a generic grid hT . Our aim is then to generate a new mesh, which is 

designed to minimize the selected error, conditional to a given number of mesh elements. For 

the purpose of our demonstration, we set the number of elements of the adapted grid to 
410eleN º . The mesh adaptation procedure can be summarized as follows: 

1. We set a global tolerance t and impose that the same error Et  is assigned to each 

triangle E of hT ; this criterion is typically denoted as the error equidistribution 

principle (Formaggia and Perotto, 2003). 

2. We solve a constrained local optimization problem in each triangle E of the mesh 

yielding the optimal values of ,
new

i El  and ,

new

i Er  (i = 1, 2) for all triangles in the mesh hT  

(see, e.g., Formaggia and Perotto, 2003). This allows computing a metric tensor field 

,0

new

EM .  

3. We aim at adapting a mesh such that the number of elements (i.e., the mesh cardinality) 

is fixed a priori. To this end, we apply a global and uniform rescaling of the metric 

tensor field  ,0

new

EM to obtain a new tensor field 
new

EM , which is associated with the 

desired number of elements. Note that the rescaling of the metric field relies on an a 

priori  estimation of the area of the elements, which can be obtained from the optimized 

quantities ,

new

i El  and ,

new

i Er , i.e., it does not require to iteratively generate the mesh 
new

hT . 
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4. Once 
new

EM  is known, we generate the adapted mesh 
new

hT  through the metric-based 

mesh generator BAMG (Hecht, 2012). 

Some constraints are imposed to the mesh adaptation procedure to guarantee the robustness of 

the methodology. Excessive element clustering is locally prevented by setting a minimum 

threshold value ( 9
min 10p -=  in our test cases) for the product 1, 2,

new new

E El l  within the local 

optimization solution. This is tantamount to assigning a lower limit on the element area, 

because 1, 2,
Ĕ

E EE El l= . In this work we do not impose any constraint on the maximum size 

of grid elements. Note that it would be possible to control the maximum size of an element, 

e.g., by imposing an upper bound to the product 1, 2,

new new

E El l . 

1.3.2. Time Step Adaptation  

Time step adaptation is implemented upon relying on a recovery-based estimate of the 

time discretization error. We aim at predicting the time step 
ktD  that can be used at each time 

level tk for the subsequent advancement in time. The recovery-based estimator for the time 

discretization error within time interval 
1

1 ,k k

kI t t-

-
è ø=ê ú is then defined as (Porta et al., 2012b) 

()
() () ()

1 1

1

2
1

2
1

1
|

k k

k

k k

R h ht k

I I k

I

C C C
t dt

t t
h

- -

-

-

-

-

µ -
è ø=D -ê ú µ Dñ

x x x
x  (1.16) 

where ()RC x  is a recovered solution, coinciding with the parabola which interpolates the 

concentration values () () ()2 1, ,k k k

h h hC C C- -è øê úx x x  at times 
2 1, ,k k kt t t- -è øê ú, respectively (see 

Figure 1.3a); and ()k

hC x  is the numerically computed concentration at time tk and at point x. 

Note that the multiplicative factor 
1kt -D  in Eq. (1.16) renders the time error estimator 

dimensionless, consistent with the spatial error estimator in Eq. (1.12) and Eq. (1.15). In this 

work, the estimator in Eq. (1.16) is always evaluated on the basis of the concentration Ch, 

because flow is steady-state and the fluid velocities are then constant in time (even if variable 

in space). The recovery-based error estimator in Eq. (1.16) is evaluated at each i-node, i.e., Ni, 

of the current mesh hT . The time error estimator over the whole space domain is obtained as 

an area weighted average 

1 1

2 2
1

k k

t k t

I Ith r
- -

-è ø è ø= Dê ú ê ú. (1.17) 

with 

( )( )1

1

2
2

2

2
1

1/ 3
kih

h

k

t

I iE N E
t

I
k

N

N E

t E

h
r

-
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Í Í

-

Í

è ø
ê ú

è ø=ê ú
è øDê ú

ä ä
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T

 (1.18) 

The new time step is computed by (a) substituting in (1.17) 
1kt -D  with 

ktD  in order to obtain a 

time error estimator associated with interval Ik, i.e.  
k

t

Ih ; (b) imposing a tolerance for time error 

estimator, 610
k

t t

I th tD -= = . As a result we obtain (Porta et al., 2012b; Esfandiar et al., 2014) 

1

1

k

t
k kt

t

I

t t
t

h
-

D
-D = D  (1.19) 

The predicted time step in Eq. (1.19) is constrained by a minimum and a maximum value. 
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These are respectively set to 0.05MINt sD =  (which coincides with the value selected for the 

uniform grid G6) and 30MAXt sD =  (which is chosen to avoid excessive coarsening of the time 

discretization). 

 

 
Figure 1.3. Time derivative recovery procedure: (a) recovered solution CR (dotted and dashed lines) versus linear 

interpolant of values 
hC  (continuous line) and (b) comparison between the time derivatives /RC tµ µ (dotted 

and dashed lines) and /hC tµ µ (continuous lines) 

 

1.3.3 Solution Adaptation Technique 

We detail here all the steps we follow to obtain the numerical solution of Eq. (1.1) 

through our adaptive strategy. As a first step, we compute a reference velocity field by solving 

the flow problem in Eq. (1.3) on a fixed uniform and sufficiently fine grid 
F

hT . This enables 

us to obtain the numerical approximation of the fluid velocity field 

( ) ( ) ( )( ),h h

F F F

hh h hu v=T T Tv . In this study we set 3F

h G=T  to achieve a good balance 

between accuracy and computational costs. 

We then illustrate in the following the way we employ the space-time adaptive procedure for a 

generic time level tk. We do so by assuming the concentration ( )k k

h hC C t=  and the grid 
k

hT  to 

be known. The adaptive solution is employed to compute 
1k

hC +
, the adapted grid 

1k

h

+
T  and the 

new time level tk+1. These are obtained through the following steps: 

1. Obtain the velocity field ( )h hh
k=$ $v v T  upon projecting ( ) ( ) ( )( ),h h

F F F

hh h hu v=T T Tv  

onto the grid 
k

hT . This is here performed through linear interpolation. 

2. Solve the transport scenario, as described in Eq. (1.1), by employing the velocity field 

( )h hh
k=$ $v v T  to determine the advective and dispersive parameters. This allows 

obtaining ( )1 kk

h hC +
T . 

3. Apply the mesh adaptation procedure relying on estimator in Eq. (1.12) or Eq. (1.15) 

and compute 
1k

h

+
T . As detailed in Section 1.3.2, we obtain this adapted grid so that the 

number of elements of 
1k

h

+
T  is approximately equal to 104. 

4. Project the concentration fields 
1 1, ,k k k

h h hC C C- +
 onto the new grid 

1k

h

+
T  to obtain the 

adapted time step 
ktD . The next time level for the simulation is then defined as 

1k k kt t t+= +D. 
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The procedure is then repeated until 
1kt T+² . Note that step 4 of the above procedure can be 

performed only when k > 1, i.e., the two steps 0 1,t tD D are associated with a fixed time step 

MINtD , which is assigned a priori, as anticipated in Section 1.3.2. 

1.4 Results  

We illustrate here the comparison of numerical results associated with the observables 

described in Section 1.2.2 and obtained relying on: (a) space-time adaptive methodology 

guided by error estimators based on the concentration fields only, i.e., Eq. (1.12), or the joint 

use of the concentration and velocity fields, i.e., Eq. (1.15); and (b) fixed time step and fixed 

uniform spatial discretization. In the latter case, we focus in the following on results obtained 

with a fixed discretization time interval set to 2tD  and grids G6 and G1, respectively 

corresponding to the reference solution, and to a uniform grid characterized by a number of 

elements of the same order of magnitude as the two adaptive methodologies considered. We 

discuss results obtained for the highly heterogeneous field (2 5Ys = ) in Section 1.4.1, and those 

obtained for mild heterogeneity (2 1Ys = ) in Section 4.2. 

1.4.1 Highly Heterogeneous domain  

The selected realization of the log-conductivity field is depicted in Figure 1.1a. Figure 

1.1b depicts the natural logarithm of the velocity modulus, i.e. ( )log | |v , as obtained from the 

numerical discretization of the flow problem on the fixed uniform grid G3. As noted in Section 

1.2.1, Figure 1.1b reveals the presence of two high velocity channels (see dashed curves in 

Figure 1.1b), which act as preferential pathways for fluid flow and are expected to drive 

transport behavior. An approximately circular low velocity region centered around location z 

= 0.035 m, y = 0.02 m is also identified (see dash-dotted circle in Figure 1.1b). Figure 1.1c 

depicts the resulting concentration field at t = 0.5 tPV. As a general observation, one can note 

that solute mass distribution across the domain is largely influenced by the structure of the 

velocity field, part of the mass being delayed due to the presence of the above mentioned low 

velocity region. 

We start our analysis by focusing on the early-time features of the adapted mesh and 

resulting concentration fields when applying adaption strategies CUVGÐ  and CGÐ . We compare 

the ensuing results against those obtained by the reference solution. Figure 1.4 depicts the 

concentration field obtained at t = 0.05 tPV by the three discretization strategies (Figure 1.4a-c) 

and the adapted meshes (Figure 1.4d-e). We present concentrations in logarithmic scale, 

because small concentration values are critical to evaluate early arrivals and tailing, which are 

often of interest in practical applications. All panels of Figure 1.4 are focused on a limited 

region located in the proximity of the inflow boundary. Analysis of Figure 1.4a-c shows that 

CUVGÐ  and CGÐ  yield a solution which is consistent with G6. We note that two solute fingers 

appear at early times. This is due to the channeling in the velocity field around the low velocity 

region zone highlighted in Figure 1.1b. 
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Figure 1.4. Test case with 
2 5Ys = : spatial distribution of the concentration field (in logarithmic scale) within a 

subset of the domain close to inlet at time t = 0.05tPV, for discretization (a) G6; (b) CGÐ ; (c) CUVGÐ  and the 

associated adapted meshes for (d) CGÐ ; (e) CUVGÐ . 

 

The analysis of the spatial topology of the adapted grid CGÐ  reveals that the element 

size is relatively coarse in the proximity of the forward solute fringe (see Figure 1.4d). This 

can be seen, e.g., in the region y = [0, 0.01] m × z =[0.04, 0.05] m and is consistent with the 

observation that concentrations vary between approximately 10-7 and 10-4 in this region, i.e., 

the concentration gradient is lower than that associated with other portions of the domain (see 

Figure 1.4b). As a consequence, the log-concentration field rendered by CGÐ  appears to be 

characterized by a local loss of accuracy. We also observe that some oscillations (of the order 

of 10-6-10-5) appear in the solution. This is evident, for example, around location (y å 0.02 m, 

z å 0.02 m). The emergence of these oscillations might be linked to the interpolation of the 

solution between adapted meshes, which is in turn associated with some errors in the presence 

of relatively coarse elements. The adapted mesh CUVGÐ  is characterized by elements of small 

size all along the forward solute fringe. This is related to the observation that adaptation is also 

guided by the spatial gradients of Uh and Vh, which are embedded in Eq.s (1.14)-(1.15). As a 

result, the solution rendered by CUVGÐ  is capable of reproducing the fine scale details of the 

reference log-concentration field, which are partially lost in CGÐ . We also observe that the 

shape of the triangular elements is nearly isotropic when the velocity components are 

considered for mesh adaptation, consistent with the isotropic correlation model selected for the 

spatial covariance of conductivity. 

Figure 1.5 depicts the log-concentration field for time t = 1.5 tPV, as given by (a) G6, 

(b) CGÐ , and (c) CUVGÐ . From a preliminary visual inspection, the concentration field displays 

smooth variations and the three solutions appear to be very similar. Solute mass remains 

trapped in the low velocity region located in the bottom part of the domain (see also Figure 

1.1b), solute being almost uniformly distributed across the system for z > 0.07 m. These 
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features of the solution are reflected in the adapted meshes. Grid 
CGÐ  is refined within the low 

conductivity zone where relatively high concentration gradients arise (see Figure 1.5d). Mesh 

CUVGÐ  is formed by elements of comparable size throughout a vast portion of the domain, i.e., 

at all locations where C > 10-7 (see Figure 1.5c and Figure 1.5e). At these late times, visual 

inspection of the results indicates that the solutions obtained for G6, CGÐ  and CUVGÐ  share 

some similarities, even as the adapted meshes display marked differences.  

 

 

Figure 1.5. Test case with 
2 5Ys = : spatial distribution of the concentration field (in logarithmic scale) within the 

simulation domain at time t = 1.5tPV, for discretization (a) G6; (b) CGÐ ; (c) CUVGÐ  together with the associated 

adapted meshes for (d) CGÐ ; (e) CUVGÐ . 

 

Figure 1.6 depicts a magnification of the log-concentration field and of the adapted 

grids around the low velocity area at t = 1.5 tPV. The solution associated with mesh CGÐ  exhibits 

local variations of the order of 10-6-10-5. These are particularly evident at z å 0.015 m, i.e., the 

light blue fringes of logC observed in Figure 1.6b do not appear in the reference solution 

(Figure 1.6a) and when CUVGÐ  is considered (Figure 1.6c). As previously noted, this result can 

be linked to local differences of the element size of the grids associated with CGÐ  and CUVGÐ . 

We observe that CUVGÐ  is composed of elements of mostly uniform size. Only mild variations 

in the element shape and orientation are detected in Figure 1.6e and Figure 1.5e. This implies 

that the footprint of the concentration field on the mesh topology is barely effective. Otherwise, 
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the mesh 
CGÐ  is completely tied to the concentration field gradients and displays marked 

variations of the element size and shape around the low velocity area. 

 

 

Figure 1.6. Test case with 
2 5Ys = : spatial distribution of the concentration field (in logarithmic scale) in the low 

velocity region evidenced in Figure 1.1b for t = 1.5tPV and discretization (a) G6; (b) CGÐ ; (c) 
CUVGÐ  together 

with the associated adapted meshes for (d) CGÐ ; (e) CUVGÐ . 

 

The evolution of the time step, tD , as a function of time is depicted in Figure 1.7 for 

CUVGÐ  (red curve) and CGÐ  (blue curve). The lowest ( MINtD ) and largest ( MAXtD ) allowed 

time step are also reported in Figure 1.7. The time steps at early times practically coincide with 

MINtD , due to the rapid temporal variation of the concentration field. As time advances, values 

of tD  larger than MINtD  are allowed. This is so because the solute plume spreads over an 

increased portion of the domain and diffusive/dispersive process gain importance leading to a 

reduced time variation of the concentration fields. The combination of the time step and mesh 

adaptivity yields a relative speed up of the computational costs. The ratio of the CPU time 

required by CUVGÐ  and G6, / 6CUV GCPUÐ , and by CGÐ  and G6, / 6C GCPUÐ , is respectively equal 

to 1

/ 6 1.27 10CUV GCPU -

Ð = ³  and 1

/ 6 1.56 10C GCPU -

Ð = ³ . 
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Figure 1.7. Test case with 
2 5Ys = : temporal evolution of the adaptive time step, tD . 

We now proceed to analyze the behavior of the selected quantities of interest described 

in Section 1.2.2. Figure 1.8a depicts the section-averaged concentrations ()iC t , with i = 1, 2, 

3, evaluated for G6 (see Figure 1.1c). Asymmetry is a recurring feature of all iC  results. This 

behavior is linked to the level of heterogeneity of the conductivity field (see, e.g., Riva et al., 

2008, 2010; Edery et al., 2015). A marked tailing behavior appears at late times. This is 

particularly evident in 1C , due to the presence of the low velocity region where solute 

accumulates at early times and from which it is subsequently slowly released by diffusion-

dispersion. For the sake of clarity, the comparison between the results obtained with the 

strategies considered is then highlighted across a set of subpanels, each focusing on specific 

parts of the ( )iC t  curves. Figure 1.8b depicts details of the early times behavior of 1C  for G6 

(black curve), G1 (green curve), CGÐ  (blue curve) and CUVGÐ  (red curve). Overall, we observe 

that the differences between section-averaged concentrations rendered by the various solutions 

are relatively small (of the order of 10-5). This can be also seen for intermediate and late solute 

arrivals, respectively in Figures 1.8c and 1.8d. We observe that the fixed mesh G1 tends to 

underestimate the section-averaged concentration for late arrivals, the adaptive grids 

reproducing quite consistently the results given by G6. The two adaptive strategies also well 

reproduce the peak concentration given by G6. Otherwise, G1 tends to underestimate the 

largest concentration by approximately 10-3 at both locations z1 and z2, as depicted in Figures 

1.8c. 

Figure 1.9 illustrates comparisons between results obtained with the diverse meshes 

tested for local values of concentrations CF and CS in Eq. (1.5). Note that, even as the two 

locations considered are quite close in the domain, the local concentration dynamics exhibit 

very different characteristics at these points. For example, CF peaks at t = 0.1 tPV, while CS 

attains the largest value at t = 1.5 tPV and then slowly decreases. The delay observed at these 

two locations reflects the fact that transport is advection dominated at location PF, while solute 

mass exchanges around location PS are dominated by diffusion and transverse dispersion. 
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Figure 1.8. Test case with 
2 5Ys = : temporal evolution of the section-averaged concentrations 

1C  (continuous 

curves), 
2C  (dashed curves), and 

3C  (dotted curves), for (a) G6. Panels (b-d) display the comparisons between 

solutions given by G1, G6, CGÐ , CUVGÐ , associated with early times (b), peak (c) and late times (d), as indicated 

in panel (a). 

 

Figure 1.9 shows a magnification of CF at early (Figure 1.9b), intermediate (Figure 

1.9c), and late (Figure 1.9d) times for G6 (continuous black curves), G1 (green curves), CGÐ  

(blue curves) and CUVGÐ  (red curves). The differences between G1 and G6 can reach values up 

to 10-2 and are particularly evident for t < 0.1 tPV, i.e., as long as CF increases with time (see 

Figures 1.9b-c). The two adapted meshes are here in close agreement with G6. Note that at 

these early times the two adaptive strategies tend to render later solute arrivals at PF, while G1 

yields earlier solute arrivals (due to numerical diffusion). The difference between the solutions 

given by all the strategies tend to reduce to values below 10-4 for t > 0.1 tPV (Figures 1.9c-d). 

We observe that the solution associated with CGÐ  displays oscillations of the order of 10-5 

which are visible at the forward and backward tails. Such oscillations are related to the small 

inaccuracies noted in Figure 1.4 and Figure 1.5, and are explained by observing that the local 

element size at location PF is characterized by large variations across time. The temporal 

variation of concentration SC  (i.e., concentration at point PS) is depicted in Figures 1.9e-f. 

Considerable differences appear between G1 and G6, while the adaptive solutions closely 

adhere to the results given by the reference solution. For example, one can see that the time of 

occurrence of a concentration value CS = 10-5 is largely overestimated by G1 (see Figure 1.9e). 

 


































































































