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1. Spacdime mesh adaptation for solute
transport in randomly heterogeneous porous
media

1.1Introduction

A critical challenge to the characterization of solute transport in heterogepeaus
materials is the development of numerical methodologies rendering suitable approximations of
the spacdgime dynamics of concentration fields in the presence of marked spatial contrasts of
the medium hydraulic parameters, such as conductivity.

This dudy is focused on transport of nogactive chemicals in heterogeneous porous
media at the continuum scale, as described through the classical Advection Dispersion
Equation (ADE). Effective dispersion coefficients appearing in the ADE accounts (in f@)ncip
for the enhancement of solute dispersion due to the unresolved velocity variability at scales
which are not explicitly included in the model (see, e.g., Bijeljic and Blunt, 2006; Dentz and
de Barros, 2015; de Barros and Dentz, 2016). This picturensistent with the dispersion
setting in capillary tubes (Taylor, 1953; Salles et al., 1993) where hydrodynamic dispersion
arises from enhanced diffusion due to the presence of a spatial velocity distribution. The
advection term appearing in the ADE accondistes the resolved details of the velocity field
emerging from the solution of the flow problem. In the past two decades a considerable amount
of literature focuses on the analysis of transport features which are not consistent with the ADE
formulation (mat notably, e.g., long tails of solute breakthrough curves, corresponding to long
residence times of solute mass within the domain). These observations has substantiated the
development of models which can capture -Rarkian (or secalled anomalous) trapert
features. These are based on approaches which includetispaagon local theories (e.g.,
Cushman and Ginn, 1993; Guadagnini and Neuman, 2001; Mdakique et al., 2006a, b),
continuous time random walk (CTRW, Berkowitz et al., 2006), fractioeaVatives (Zhang
et al., 2007) and multiate mass transfer concepts (Haggerty et al., 2004). All of these effective
formulations include nonlocal transport terms, a framework relating all of them being presented
by Neuman and Tartakovsky (2009).

According to a number of recent studies, the ability of the AaBed mathematical
formulation to interpret solute transport processes in randomly heterogeneous media is largely
tied to the level of descriptive detail associated with the characterizdtitime osystem
properties. For example, results of Riva et al. (2008, 2010) suggest that appatEitkizonm
features observed in fiektale data are captured by the use of an ADE through an appropriate
description of the (random) threlmensional heterameity of the aquifer, and hence of the
velocity field. In this context, the spatiene resolution selected to approximate the ADE can
have a considerable impact on the ability of the model to interpret observed results (e.g.,
Lawrence and Rubin, 2007). ik then relevant to be able to approximate the ADE with a
sufficiently refined spacéme resolution to retain the relevant details of the input
heterogeneous conductivity (or trasmissivity) field, as the spatial organization of preferential
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pathways cammprint important transport features of transport (Edery et al., 2014. pkiori
selection of the most suitable space and time discretization becomes then a challenging task.
This aspect is exacerbated in highly heterogeneous media where solutesazdly tyavel
relatively fast along preferential pathways and reside for long times #dteity regions.

A convenient way to design a mesh according to which the dpaeedomain is
discretized is to rely on a setting characterized by a uniform ncahgrid in space and a fixed
time step across the simulation window. In this context, an appropriate discretization grid can
be identified through a typical grid convergence analysis. The latter is based upon the solution
of the numerical problem througtiverse space / time discretization levels, obtained through
a sequential uniform refinement of the spatial mesh and of the time step. This type of approach
can lead to unaffordable computational costs as the domain size increases and/or a detailed
descriiion of the tracer plume is needed. Adaptive discretization techniques provide a valuable
alternative. The basic idea of adaptive discretization is to exploit the features of the solution to
increase or decrease automatically the space and time resakgmriated with the numerical
approximation. As a consequence, the element and time step size (and eventually the element
shape) is not chosenpriori, but dynamically adjusted. This is typically obtained upon relying
on a specific error indicator. A ses of previous works provides examples of implementation
of adaptive grids in the context of numerical modeling of flow (Knupp, 1996; Cao and
Kitanidis, 1999; Cirpka et al., 1999; Mehl and Hill, 2002; Bresciani et al., 2012; Jayasinghe,
2015) and solute @ansport scenarios in homogenous (see, e.g., Pepper and Stephenson,1995;
Kavetski et al., 2002; Saaltink et al., 2004; Younes and Ackerer, 2010) and heterogeneous (see,
e.g., Huang and Zhan, 2005; Klieber and Riviére, 2006; Chueh et al., 2010; Gedeon and
Mallants, 2012; Amaziane et al., 2014; Mansell et al., 2002 and references therein) porous
media. Amaziane et al. (2014) employ both space and time adaptive technique for simulating
radionuclide transport in bloekise heterogeneous media. In their approtiese authors did
not incorporate the anisotropic features of the solution to guide the spatial adaptation of the
grid. Jayasinghe (2015) implement an anisotropic spatial and temporal step refinement for
single and twe phase flow taking place in a homewus field scale scenario. An advantage
of anisotropic mesh adaptivity is that the size, orientation and shape of the elements are
optimized to match the directional features of the problem considered.

Our study is viewed in this context. A distinctivegimal aspect of our work is that we
combine anisotropic mesh and time step adaptation to simulate solute transport within
randomly heterogeneous media. We characterize heterogeneity of the considered porous
systems in terms of the spatial distributiorhgéiraulic conductivity, whose natural logarithm,

Y, is treated as a secendder stationary random process This conceptualization of the medium
is at the basis of a large body of works in the field of stochastic groundwater hydrology (see,
e.g., Dagan, 19amongst others). By performing a detailed study on single realizations of the
conductivity field, our work provides an assessment of the reliability of adaptive grid
techniques to be employed within uncertainty quantification and model calibration ymexed

Our works starts from the anisotropic mesh and time step adaptive discretization
technique recently proposed by Esfandiar et al. (2014, 2015). The latter relies an the
posteriorirecoverybased error estimators for space and time discretizatiors gresented by
Micheletti and Perotto (2010) and Porta et al. (2012a,b). Esfandiar et al. (2015) assess the
impact of employing a space and time adaptation procedure in the context of parameter
estimation. They do so upon comparing parameter estimdisned through inverse
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modeling of solute transport within a laboratsgale blockwise heterogeneous flow cell.
Their results show that implementation of the spgave adaptive methodology vyields
improved quality of parameter estimates as comparechstgaiose obtained using fixed
uniform discretization characterized by a seemingly sufficient resolution.

Here, we extend the adaptive discretization technique of Esfandiar et al. (2015) and apply
it to modeling solute transport in single realizationsaofdomly heterogeneous porous media.

We follow the typical procedure of solving the flow problem on a fixed numerical grid. The
latter is designed to honor the spatial structure of the random conductivity field. The resulting
velocity field may exhibit a aoplex spatial arrangement, including the occurrence of high
velocity regions where flow is channeled and large stagnant zones that may originrate non
Fickian solute transport features displayed by spatially averaged solute breakthrough curves
(Edery et al.2014). Spatial dynamic adaptation entails performing coarsening and refinement
of the computational mesh/grid at each time step. In this context, a critical challenge to an
effective implementation of dynamically adaptive spatial meshes is the requiremnent
projecting the velocity field onto the adapted mesh. The latter could be characterized by local
element sizes which may be unrelated to the original mesh employed to characterize flow
across the hydraulic conductivity field.

Here, we investigate twoiveerse strategies guiding the anisotropic meshes adaptation.
The error estimator associated with each of these strategies is assessed on the basis of spatial
gradients of i} solute concentration only, oii) both concentration and fluid velocity
componets. With reference to the latter implementation, we follow the procedure proposed by
Porta et al. (2012a) to combine diverse error indicators to drive mesh adaptation. Embedding
the velocity components in the error estimator is an original feature oftwdy and is
consistent with the feedback between the spatial derivatives of the components of the velocity
vector and the observed folding, stretching, mixing and spreading of the evolving concentration
plume. The latter have emerged as remarkable featuingsh are particularly evident in highly
heterogeneous media (see, e.g., Le Borgne et al., 2015).

To assess the quality of the adaptive methodologies implemented, we focus on the
temporal evolution of both local and spatially integrated concentrationgelasas global
spreading and mixing indicators. These include the second centered spatial moment of
concentration and the scalar dissipation rate.

1.2Problem Setting

1.2.1 Maematical and numerical model

We consider a twalimensional rectangular domaw, of heightH = 0.14m and width
L = 0.04m. We denotethe horizontaland the vertical direction witls, z, respectively gee
Figurel.1). The Advection Dispersion Equation (ADE) reads
%+v 6® -(mECh o, (1.1)

where C = C(x, t) [-] is solute concentration &icationx and timet, v [LT ] is the velocity

vector(vy andv, respectively denote horizontal and vertical velociynponents andD [L2T
1 is the local dispersion tensgiven by



ViV, . ..
D=(a; D,) ¢ (+a f)aﬁ with i,j =y,z. (1.2)

Here a, [L] and a, [L] respectivelyare transverse and longitudinal dispersiviby, [L2T™]
is molecular diffusiond, istheKr onec ker Qv islthd velecity madanlas. We set

a,=4q =aX>mandD,=10°n7Y /s in our showcase examples. The imposed boundary
conditions for Ec (1.1}(1.2) are (see also Figurk.lc) as follows: a timearying
concentrationC,. is set along the bottom edge of the domain, accordin@.to=¢€"";
impermeable boundary conditions are prescribed along the vertical edges; and a free boundary
condition is imposed at the top of the domain, iBGC & @G, n being the normal unit veato

to the boundary (see also Figd®). Solute concentration is zero everywhere in the domain at
the initial simulation time.

We consider a steaelate advective velocity field;, whose spatial structure is driven by the
typical formulations

PO G, V= IE, (1.3)

K
f
whereh [L] is hydraulic head, and [-] is porosity, which we take as uniform and sefas
0.35. The imposed boundary conditidios Eq. (1.3) are (see also Figutelb): fixed head
along the bottom edgdy,. ; no-flow along the vertical edges; and imposed constant vertical

velocity, v, ,.=7.0° 10°m /s, at the top boundary. The hydraulic conductivity of the porous

medium is modeled as an isotropic random figld= K e"*? [LT], K, =10°m/s being

the geometric mean oK and Y a zeremean secondrder stationary random process
characterized by the isotropic exponential covariance function
I

C,=s2e . 1.4)
Here,r, sZ, | respectively are the separation vector (or lag) between two points in space,
variance and correlation length afIn our examples, we skt 0.02m, corresponding téi/l
=7 andL/l = 2. We consider a mildlys(; = 1) and a stronglys£y =5) heterogeneousfield,

to explore the effects of increasing level of complexity of the velocity and concentration
distributions on the grid adaptation strategy. The heterogeneous condufiéids/ are
synthetically generated by the widely used and tested code SGSIM (Deutsch and Journel, 1998)

on a uniform grid withn, =50 and n, =175 elements, respectively along thandzdirections
Note that this corresponds to characterize the conductivity field through 25 generation points
per correlation length, which ensures attaining a high level of descriptive detail of the

heterogeneity ifk. Hereinafter we label aBK the size of the square element of the uniform
mesh employed for generatig Figurel.la depicts the realization ¥femployed for the test

case withsy =
Transport simulations are performed across a time window of lehgtt,, and T =2t ,

respectively fors¢ =5 and s¢ =1, t,, = H/v, ;. = 200s corresponding to a pore volume.



A global Péclet numbePe= |VZ’BC/( D, #, B@) can be defined as the ratio between average

diffusion-dispersion and advective time scales. In our numerical test Pase20.0.
Following Esfandiar et al. (2014, 2015), we discretize Elgly-(1.2) by meansfoa stabilized
finite element method, which is based on a streamline diffusion technique (Brabkiighes,

1991). Spatial discretization is performed upon relying on a spatial nTgsh{ E}, which
results in a conformal discretizatioh @/ into triangular elements. Discretization of the time
window [0, T] is performed upon introducing the time Iev{:tg =0,..t" :T} , Which define

the set{l,} of the time intervalsl, of amplitude Dt %** ‘. Time discretization is

performed through the standafdmethod (Quarteroni et al., 2007). We resort to an implicit
scheme and st =2/3 to guarantee the unconditionally absolute statfithed -method. The
numerical solution of the flow problem in Eq. (1.3) relies on a standard finite element of degree

two for the pressure. As such, velocity components are obtained as piecewise linear functions
through Eq. (1.3).

Figurel.1b depicts theesulting spatial distribution of the natural logarithm of the modulus of
Vv, Iog(|v|), for sZ =5. Note the complexity of the structure of the velocity field, as evidenced
by the presence of elearly defined lowvelocity region and two preferential pathways
characterized by large velocities (identified by blaaklted curves in Figure 1.1b). Figaréc
depicts the concentration field tat 0.5tpy calculated on the same uniform mesh $g =5

(see details in Section 1.2.3).
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Figurel.l Test case With$ =5: (a) Spatial distribution of the legonductivity fieldY, (b) spatial distribution

of the (natural) logarithm of the velocity modulus, (c) solute concentration figld= .5 tey. High-velocity
channels (dashed lines) and the low velocity region {(dasied line) are highlighted in (b). Locations associated

with section averaged concentratioég C_IZ, C_Ia and local concentration€ , Cg are identified in (c) (see

text for definitions). Impos&boundary conditions for the flow and transport problems are respectively included
in panels (b) and (c).



1.2.20bservables

We introduce here the quantities which constitute the key target outputs for the purpose
of our analyses. We consider tigenporal variation of solute concentration at given locations
within the computational domain, i.e.,

C- () =C(%. %. 9 Cs (1) =CYe 25 9 (1.5)
where P- = (Y, z-) and P, = (Y5, Z) indicate the locations in the domain Wh(Meis
largest and lowest, respectively (i.e., subscrptnd S respectively correspond to fast and
slow regions). We find ¥ =3.8310°m; z =3.8310°m) and (ys=1.5310°m;

z, =3.6 3102m) for the highly heterogeneous test casé € 5), as depicteth Figurel.1c.
Otherwise, we obtain . =4 310°m; 2z =6.9310°m) and (y;=1.8310°m;

z, =3.3 3102 m) for the field withsZ =1.

We also consider secti@averaged concentrationsimicking typically observed
breakthrough curves, i.e.,

Ci :%Fp(y, z, D dy with il {123, (1.6)

whereC; is evaluated at = H/4, C atz = H/2, andC; atzs = H (see Fjurel.1c).

We then focus on globally integrated quantities, which can quantify spreading and mixing of
the plume within the domain. To this end, we consider the second centred spatial moment of
the concentration plume along thdirection,which has a relevant role for the characterization

of solute plume spreading and is defined as

S,()=—— fez-7,() gCx. }d  with  M(t)=pE(Dd YV, (1.7)
M (t) Way w
where z,,, is the center of mass of the plume at timee.,
zAV(t):mVr:]z ax, hdVv. (1.8)
We finally consider the scalar dissipation rate
c(t)=f&'D Bbd (1.9)
w

which quantifies the rate of mixing of the plume and is markedly important for the study of
mixing-driven reactive transport (see, e.g., De@&ii et al., 2005, and references therein).
1.2.3 Fixed Uniform Discretization

We solve flow (Eqg.1.3)) and transport (Eql(l)) in the seup described in Sectidn2.1
for a series of fixed uniform triangular meshes, each associated with an increased level of
spatial discretization and decreased width of the time step. Increasing levels cefirgpace
refinement are analyzed until convergence of the numerical reisuledtained. As a
convergence criterion, we impose that all of the integrated quantities of interestl(&).s (
(1.9)) do not exhibit a relative absolute error larger than 1% and that the pointwise breakthrough
curves (see Eql()) do not exhibit a reteve absolute error larger thaeo between two
consecutive levels of refinement. As a starting grid, corresponding to a first level of
discretization, we select a structured Cartesian grid where the distanaesd Dz between

two nodes along thg andz axes coincide withDK . The resulting mesh, here term@&d, is
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formed byn,, =17'50C triangles. As a second level of discretization (corresponding to mesh

G2), we subdivide each conductivity element into four-sldments, each of which is
composed of two triangles. In this configuration, the length of the edges of the triangles are

Dy = D K/M2 and G2 comprisesn;, = 70'00C elements. We proceed according to this
strategy until we reach a level of refinement correspondirigyto= D *K/B for meshG6.
The latter is then composed of, =630, 00C triangles. With reference to the time step, we

analyze three different values, i.X, 0's, Dt, &5 20°s and Dt, =2.5 20°s. Our
results indicate that the quantities of interest introduced in Seztattain convergence at
G5 (formed byn,; =43'750C triangles) and foDt, =5 20°s. In the following, the results

associated witks6 andDt, =5 E0°*s represent our reference solution for the fixed tspace
discretization and results for the adaptive procedure will be compared against these.

1.3Adaptive Discretization Technique

We briefly recall here the main features of the adaptive discretizatethodology.
The latter has been previously applied to shallow water modeling (Porta et al., 2012b) and
computational fluid dynamics (Micheletti et al., 2010) settings. Esfandiar et al. (2015) applied
this procedure to analyze solute transport within h@megus and bloewise heterogeneous
porous media.
The adaptive technique is grounded on the definition @ posteriorierror estimator for the
global (spacdime) discretization error
hi= 8 +4, (1.10)
where A is an anisotropic spatial error estimator that enables us to optimize the size, shape,

orientation of the mesh elements afdis an error estimator for the time discretization. We

compute the two terms in Eq. (1.10) by relying oecoverybased error estimators
(Zienkiewicz and Zhu, 1987), in the form introduced by Micheletti and Perotto (2010) and
Porta et al. (2012b).

1.3.1Anisotropic Mesh Adaptation
Let Ch be the piecavise linear finite element approximation of concentration in the
solution of Eq. (1.1), which is defined on me3h. We follow Porta et al. (2012a) and

Micheletti and Perotto (2010) and introduce the local anisotraiimator

8‘7EC r{ ’fEelE " R Ch(t)) 'C@t)) 23

/1e éE _ (1.11)
Hige B(G(0) GRY) Ja EB T it>0

Here, /, . andr, . (i = 1, 2) respectively identify the eigenvalues and the eigenvectors of the

tensorME, defining the mapping between a reference triarﬁ@d the generic elemeftof
T, (see Figurd..2a). Note that, . are measures of the length of the semgs of the ellipse

circumscribingg, while r; . identify the directions of these seanes (Formaggia and Perotto,
2001, 2003). The quantit?R(Ch(t)) represents the recovered spatial gradie@natt timet.
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As depicted in Figuré.2b, PR(Ch) is computed as theesweighted average of the discrete
gradientBC, (t) within the patchDE of triangles sharing at least one vertex véithiThea

posterioriestimator of the global error associated with the finite element spatial discretization
of the concentration field is computed as

N 2 ‘e 8 2
ge(t) ga &1t g» (1.12)

Ei T,
Eq. (1.12) represents an anisotropic error estimate, because it directly involvesdtreais
quantities/; . andr, . identifying the size, shape, and orientation of elenkewe refer to
Porta et al. (2012a, b) and Micheletti and Per(&@10) for a rigorous illustration of the error
estimator in Eqg.s (1.14(L.12) and its applicatio.his adaptation strategy and the associated

results will be referred to &g in the following.
(@)

1

Figure 1.2 Spatial error estimatohéc (t) in (1.11): definition sketch of (a) the anisotropic setting, and (b) the

recovered gradienPy (Ch) .

Togetherwith Eq. (1.12), we consider in this work an additional version of the error
estimator. The latter is constructed with the aim of embedding the spatial variability of the

velocity components. Let us then assume that the$ietd(§h,v$h) represents the pieesise
linear interpolation of the velocity field on the adapted mdsh We introduce the
dimensionless components

3 B, - min(ﬁh) _ B - min(§h)
Uh — X y Vh - . !

max@h )- mln@h) max@h )- mm@h)
which we embed in the followindefinition for the error estimator

€

10,if C, ¢ (t) 16

1

ﬁ{ {Z,E gl,E @;)R(U h) 'Uﬁ) 28 (1.14)

1E 2E DE
28, P(U)  UP Zéd E Of C,o(t) 107

Here, Ch’E(t) represents the average concentration in the mesh trigragléimet. We can

(1.13)

2

ey (t) &

/

—_) =) =) ——)—)

also define an error estimatdr’, (t) upon replacingJn with Vi in Eq. (1.14). It is then

possible to use Eq. (1.14) to obtain global error estinfaesnd /7' in the form of Eq. (1.12).
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Note that the error estimator in Eq. (1.14) is defined as a measure of the variability of the
dimensionless velocity componed,, and is also conditional to the value of local

concentrationC, . (t). This chote is consistent with our aim, which is directed towards

targeting grid refinement across portions of the domain where solute mass is present, i.e., where
transport phenomena are active at a given time.

We aim here at embedding in a unique error indicéterinformation on the spatial
distribution of concentration and on the velocity components. Following Porta et al. (2012b),
we then define a globalror estimator

. 2 1 N 2 L2 2\.

@t () 5 D T maR ) (115)
where the concentration field and the velocity companarg jointly employed to guide the
grid adaptive procedurd his adaptation strategy and the associated results will be referred to

as Gycyy in the following. Note that an error estimator in which different quantities are

combined has been previously employed in Porta et al. (2012a) in the context of shallow water
equations.

Here, we apply the same concept to the numerical solution of Eq. (1.1), where the
velocity components are parameters (and not unknowns) of the problem. We do so on the basis
of the observation that the solution of Eq. (1.1) requires projecting the velocity components
onto the grid employed to compute concentration. We use a linear iaterpof the velocity
field between the mesh employed to solve Eq. (1.3) and the mesh@¢#isreomputed. The
indicator in Eq. (1.15) is designed to control the error associated with the solufipasoivell
as the one related to the interpolatiorJaf V.

The final goal of our procedure is to construct an anisotropic spatial mesh driven by the
estimator in Eq. (1.12) or Eq. (1.15). Let us assume her€thbh, Vi are known piecavise

linear functions on a generic gri@l, . Our aim is then to generate a new mesh, which is

designed to minimize the selected error, conditional to a given number of mesh elements. For
the purpose of our demonstration, we set the number of elements of the adapted grid to

Ngi © 10*. The mesh adaptation procedure can be summarized as follows:

1. We set a global toleranceand impose that the same eriqr is assigned to each

triangle E of T, ; this criterion is typically denoted as the error equidistribution

principle (Formaggia and Perotto, 2003).
2. We solve a constrained local optimization problem in each trigdBghé the mesh

new

yielding the optimal values of£" and ;2" (i = 1, 2) for all triangles in the mesh,
(see, e.g., Formaggia and Perotto, 2008)s allows computing a metric tensor field
MET.

3. We aim at adapting a mesh such that the numibelements (i.e., the mesh cardinality)
is fixed a priori. To this end, we apply a global and uniform rescaling of the metric

new.

tensor field M f'to obtain a new tensor fieltl &, which is associated with the

desired number of elements. Note that the rescaling of the metric field reliesaon an
priori estimation of the area of the elements, which can be obtained from the optimized

new new

quantities/e" andr; 2", i.e., it does not require to iteratively generate the nigSh

12



4. Once M " is known, we generate the adapted m&sf' through the metribased

mesh generator BAMG (Hecht, 2012).
Some constraints are imposed to the mesh adaptation procedure to guarantee the robustness of
the methodology. Excessive element clustering is locally prevented by setting a minimum

threshold vale ( py, =10° in our test casesjor the product/[2" f&* within the local
optimization solution. This is tantamount to assigning a lower limit on the element area,

becausdE| =‘|§/1,E /. In this work we do not impose any constraint on the maximum size

of grid elements. Note that it would be possible to control the maximum size of an element,
e.g., by imposing an upper bound to the prodygt /¢".
1.32. Time Stepdaptation

Time step adaptation is implemented upon relying on a recda=gd estimate of the

time discretization error. We aim at predicting the time 8pthat can be used at each time
level t for the subsequent advancement in time. The recdvasgd estimator for the time

discretization error within time intervad|_, = g"‘l,t" is then defined as (Porta et al., 2012b)

2

¥ (x) g B ﬁ“CRTfX)I'“ G () Iﬁfl(x)a dt (1.16)

where CR(x) is a recovered solution, coinciding with the parabola which interpolates the

concentration valuegCy ?(x),Cy *(x),Gy(x) at times g% t“*t“ , respectively (see
Figure1.3a); andCf (x) is the numerically computed concentration at tifvend at poink.

Note that the multiplicative factobt** in Eq. (1.16) renders the time error estimator
dimensionless, consistent with the spatial error estimator in Eq. (1.12) and Eq. (1.15). In this
work, the estimator in Eq. (1.16) is always evaluated on the basis of the concer@ration
because flow is saaly-state and the fluid velocities are then constant in time (even if variable
in space). The recovetyased error estimator in Eq. (1.16) is evaluated atieactie, i.e.N;,

of the current mesfiT,, . The time error estimator ovére whole space domain is obtained as
an area weighted average

woE m (1.17)
with
2 é-EiT 1/3 3 -iE‘ ltk-l Ni i} E
&, F ( a” 37 ( )éH (1.18)
@_ mNiTh|E|

The new time step is computed by (a) substituting in (1IC'7} with Dt* in order to obtain a
time error estimator associated with intenxal.e. h,‘k ; (b) imposing a tolerance for time error

estimator/ = P 40°. As a result we obtain (Porta et al., 2012b; Esfandiar et al., 2014)

k _ftDt 1
Dt =1t (1.19)
lk-1

The predicted time step in Eq. (1.19) is constrained by a minimum and a maximum value.
13



These are respectively set 4, 0.0% (which coincides with the value selected for the

uniform gridG6) and Dty;,x  =30s (which is chosen to avoid excessive coarsening of the time
discretization).

(@) ©)]

' t&-s t.{ 2 t1_1 tA = Zl‘fi tkfl t.t. 1 t&
Figure 1.3Time derivative recovery procedui@) recovered solutior (dotted and dashed lines) versus linear

interpolant of value<C, (continuous line) and (b) comparison between the time deriva|;'l€c‘a§/ L (dotted

and dashed lines) ardC, /1 (continuous lines)

1.33 Solution Adaptation Technique
We detail here all the steps we follow to obtain the numerical solution of Eq. (1.1)
through our adaptive strategy. As a first step, we compute a reference velocity field by solving

the flow problem in Eq. (1.3) on a fixed uniform and sufficiently finel gfi" . This enables
us to obtain the numerical approximation of the fluid velocity field

A (ThF):(uh (T hF),vh(I' hF)). In this study we sefl,” =G3 to achieve a good balance

between accuracy and computational costs.
We then illustrate in the following the way we employ the sfiawe adaptive procedure for a

generic time levet. We do so by assuming the concentra@in= C, (t“) and the gridT* to

be known. The adaptive solution is employed to com@jté, the adapted grid,“** and the
new time levet“*!. These are obtained through the following steps:
1. Obtain the velocity fieldb, =¥, (Thk) upon projectingv, (ThF) :(uh (T hF),vh(I' hF))

onto the gridT,“. This is here performed through linear interpolation.
2. Solve the transport scenario, as described in Eq. (1.1), by employing the velocity field
¥ =¥, (Thk) to determine the advective and dispersive parameters. This allows

obtaining C** (Thk) :
3. Apply the mesh adaptation procedure relying on estimator in Eq. (1.12) or Eq. (1.15)
and computeTh‘“l. As detailed in Section.3.2, we obtain this adapted grid so that the

number of elements oThk+1 is approximately equal to £0
4. Project the concentration field§*,C,C** onto the new gridT,“** to obtain the

adapted time stefDt. The next time level for the simulation is then defined as
tt =t + ol
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The procedure is then repeated utltif 2 T . Note that step 4 of the above procedurelman

performed only whek > 1, i.e., the two stepBt®, B' are associated with a fixed time step
Dt,,n » Which is assigned priori, as anticipated in Section 1.3.2.

1.4 Results

We illustrate here the comparison of numerical results associated with the observables
described in Sectioi.2.2 and obtained relying ona)( spacetime adaptive methodology
guided by error estimators based on the concentration fields only, i.el.2], ¢r the joint
use of the concentration and velocity fields, i.e., BE45); and b) fixed time step and fixed
uniform spatial discretization. In the latter case, we focus in the following on results obtained
with a fixed discretization time intervalesto Dt, and gridsG6 and G1, respectively

corresponding to the reference solution, and to a uniform grid characterized by a number of
elements of the same order of magnitude as the two adaptive methodologies considered. We

discusgesults obtained for the highly heterogeneous figl@l £ 5) in Sectionl 4.1, and those
obtained for mild heterogeneity € =1) in Section 4.2.

1.4.1 Highly Heterogeneous domain
The selected realization of thag-condudivity field is depicted in Figurd.la. Figure

1.1b depicts the natural logarithm of the velocity modulus,lchg(|v |) as obtained from the

numerical discretization of the flow problem on the fixed uniform G&dAs notedn Section
1.2.1, Figurel.lbrevealsthe presence ofwo high velocity channelésee dashed curves in
Figure 1.1b), which act as preferential pathways for fluid flow and are expected to drive
transport behaviorAn approximately circular low velocity region centered around location
= 0.035 my = 0.02 m is also identified (see deddited cicle in Figure 1.1b). Figuré.1c
depicts theesulting concentration field &= 0.5tpy. As a general observation, ooan note
that solute mass distribution across the domain is largely influenced by the structure of the
velocity field, part of the mass being delayed due to the presence of the above mentioned low
velocity region.

We startour analysidy focusing on thearlytime featuresof the adapted mesh and
resulting concentration fieldshen applying adaption strategi€s.,, and G,. . Wecompare

the ensuing results against those obtained bydference solutionFigure 1.4 depictsthe
concentration field obtained &t 0.05tpv by the threaliscretization strategies (Figutetac)

and the adapted meshes (Figurdde). We present concentrations in logarithmic scale,
because small concentration values are critical to evaluate early arrivals and tailing, which are
often of interest in practicapplications. All panels of Figure.4 are focused on a limited
region locatedn the proximity of the inflow boundarynalysis of Figurel.4ac showsthat

Gyeuy @nd G, yield a solution which is consistent wi@6. We note that two solute fingers

appear at early times. This is due to¢hanneling in the velocity field around the low velocity
region zone highlighted in Figudelb.
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0.04

ylm] 0.04 y[m]

Figure 1.4. Test case witlsf =5 spatial distribution of the concentration field (in logarithmic scale) within a
subset of the domain close to inlet at titre 0.03py, for discretization (aj56; (b) Gy ; (€) Gy and the

associated adapted meshes for@}). ; (e) Gyeyy -

The analysis of the spatial topology of the adapted Ggd reveals that the element
size is relatively coarse in the proximity of the forward solute frifgsge Figurel.4d). This
can be seen, e.g., in the regiynr [0, 0.01]m x z=[0.04, 0.05]m and is consistent with the
observation thatoncentratios varybetween approximately Y0and 1¢* in this region, i.e.,
the concentratiogradientis lower than that associated widther portiors of thedomain (see
Figure 1.4b). As a consequence, the-lmmncentration field rendered Hy,. appears to be
characterized by a local loss of accuracy. We also observe that some oscillations (of the order
of 105-10°) appear in the solution. This is evident, for example, around locatén (0 . 02 m,
za 0.02 m). The e mer gnghtoelinked to thelintemp@atiom sfahie | | at i
solution between adapted meshes, which is in turn associated with some errors in the presence
of relatively coarse elemenfhe adapted mes,.,, is characterized by elements of small
sizeall along the forward solute fringe. This is related to the observatioadbptation islso
guided by the spatial gradientsdf andVh, which are embedded in Eq.s (144)15). As a
result, the solution rendered I8, is capable of reproducing the fine scale details of the

reference logconcentration field, which are partially lost &,.. We also observe that the

shape of the triangular elements is nearly isotropic when the velocity compoments a
considered for mesh adaptation, consistent with the isotropic correlation model selected for the
spatial covariance of conductivity.

Figurel.5 depicts the logoncentration field for timé= 1.5tpy, as given byd) G6,
(b) G,c,and €) G,.,, - From a preliminary visual inspection, the concentration field displays

smooth variations and the three solutions appear to be very similar. Solute mass remains
trapped in the low velocity region located in the bottomt pathe domain(see also Figure
1.1b) solute being almost uniformly distributed across the systenz £010.07 m. These
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features of the solution are reflected in the adapted meshesGgGrid refined within the low

conductivity zone where relatively high conaaion gradients arise (see Figuréd). Mesh
G,y Is formed by elements of comparable size throughout a vast portion of the domain, i.e.,

at all locations whes C > 107 (see Figure 1.5¢ and Figuiebe). At these late times, visual
inspection of the results indicates that the solutions obtaine@&pG,. and G,,, Share

some similarities, even as the adapted meshes display marked differences.

(@ G, ®) Gy © Gocur
0.14

E 0.07
[N

S HL
e
0 yim] 004 0 ) 004 0 0 0.04

) G

= 0.14
log(C)

(e G

Figure 1.5. Test case witﬂf =5 spatial distribution of the concentration field (in logarithmic scale) within the
simulation domain at time= 1.5py, for discretization (ajs6; (b) GDC ; (€) GDCUV together with the associated

adapted meshes for (@, ; (e) Gacuv .

Figure 1.6 depicts a magnification of the legncentration field and of the adapted
grids around the low velocity areaat1.5tpy. The solution associated with meS). exhibits

local variations of the order of PAL0®. These are particularly evidentza 0. 015 m,
light blue fringes of lo§ observed in Figurd.6b do not appedn the reference solution
(Figurel.6a) and wherts, ., is considered (Figurg.6¢). As previously noted, thissult can

be linked to local differences of the element size of the grids associateGyitind G, .
We observe thaG,,, is composed of elements of mostly uniform size. Only mild variations

in the element shape and orientatioa detected in Figure 1.6e and Figarge. This implies
that the footprint of the concentration field on the mesh topology is barely effectieswith,
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the meshG,. is completely tied to the concentration field gradients and displays marked
variations of the element size and shape around the low velocity area.

@ 6. ® ¢ @
0.07

Gycor

z[m]

004 0

y[m] ylm]
Figure 16. Test case with;f =5 spatialdistribution of the concentration field (in logarithmic scale) in the low

velocity region evidenced in Figudelb fort = 1.5pyv and discretization (&56; (b) GDC ; (C) GDCUV together
with the associated adapted meshes forlgg}. ; (e) Gy -

The evolution of the time stefipt, as a funton of time is depicted in Figurk.7 for
G,y (red curve) andG,. (blue curve). The lowestlt,,, ) and largest Dt,,x) allowed
time stepare also reported in Figuie7. The time steps at early times practically coincide with
Dty - due to the rapid temporal variation of the concentration field. As time advances, values
of Dt larger thanDt,,, are allowed. This is so because swute plume spreads over an

increased portion of the domain and diffusive/dispersive process gain importance leading to a
reduced time variation of the concentration fields. The combination of the time step and mesh
adaptivity yields a relative speed upthe computational costs. The ratio of the CPU time
required byG,.,, andG6, CPU,. . and byG,. andG6, CPU,,, is respectively equal

t0 CPU,g e =1.27 310" and CPU,,., =1.56 310".
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Figurel.7. Test case witI$$ =5: temporal evolution of the adaptive time stég, .

We now proceed to analyze the behavior of the selected quantities of interest described
in Section1.2.2. Figurel 8a depicts the sectiemveraged concentratior (t), withi = 1, 2,

3, evaluated foG6 (see Figurd.1lc). Asymmetry is a recurring feature of &l results. This
behavior is linked to the level of heterogeneity of the conductivity field (see, e.g., Riva et al.,
2008, 2010; Edery et al., 2015). A marked tailing behavior ap@eage times. This is

particularly evident inC:, due to the presence of the low velocity region where solute
accumulates at early times and from which it is subsequently slowly released by diffusion
dispersion. For the sake of gty, the comparison between the results obtained with the
strategies considered is then highlighted across a set of subpanels, each focusing on specific

parts of theC; (t) curves. Figurd.8b depicts details of the early times behawfoC, for G6
(black curve)G1 (green curve)iG,. (blue curve) ands,,, (red curve). Overall, we observe

that the differences between sectmreraged concentrations rendered by the various solutions
are relatively small (of the order of 30 This can be also seen for intermediate and late solute
arrivals, respectively inigures1.8c and 1.8d. We observe that the fixed m@%htends to
underestimate the secti@veraged concentration for late arrivals, the adaptive grids
reproducing quite consistently the results giverd®y The two adaptive strategies also well
reproducethe peak concentration given I636. Otherwise,G1 tends to underestimate the
largest concentration by approximately®l#t both locationg: andz, as depicted in Figures
1.8c.

Figure 1.9 illustrates comparisons between results obtained with the diverse meshes
tested for local values of concentratiadbs and Cs in Eqg. (1.5). Note that, even as the two
locations considered are quite close in the domain, the local concentration dyesiniits
very different characteristics at these points. For exanipi@eaks at = 0.1tpy, while Cs
attains the largest value tat 1.5tpy and then slowly decreases. The delay observed at these
two locations reflects the fact that transport is adeaatiominated at locatid?-, while solute
mass exchanges around locatiyare dominated by diffusion and transverse dispersion.
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Figure 18. Test case withsf =5: temporal evolution of the secti@veraged concentratiorél (continuous
curves),é2 (dashed curves), ané3 (dotted curves), for (6. Panels (W) display the comparisons between

solutions given b1, G6, G, GDCUV , associated with early times (b), peak (c) and late times (d), as indicated
in panel (a).

Figure 1.9 shows a magnification @r at early (Figure 1.9b), intermediate (Figure
1.9¢), and late (Figure.9d) times foiG6 (continuous black curvespl (green curves),.

(blue curves) an@,,, (red curves). The differences betwé&ghandG6 can reach values up

to 102 and are particularly evident fo 0.1tpy, i.e., as long a€r increases with time (see
Figures1.9bc). The two adapted meshes are here in close agreemer®avithote that at
these early times the two adaptive strategies tend to render later solute arRvalghalie G1
yields earlier solw arrivals (due to numerical diffusion). The difference between the solutions
given by all the strategies tend to reduce to values beldWatQ > 0.1tpy (Figuresl.9¢d).

We observe that the solution associated v@h displays oscillations of the order of 10
which are visible at the forward and backward tails. Such oscillations are relatecstoathe
inaccuracies noted in Figure 1.4 and Figl® and are explained by observing that the local
element size at lodah Pr is characterized by large variations across tififee temporal
variation of concentratiorCg (i.e., concentration at poirits) is depicted in Figure$.9ef.
Considerable differences appear betw&inandG6, while the adaptive solutions closely
adhere to the results given by the reference solution. For example, one can see that the time of
occurrence of a concentration valbe= 10° is largely overestimated 1 (see Figurd.9e).
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